
5 | 1 3

Complexity Analysis of an 8 point FFT Processor for
different Butterfly Structures

Dr. M. Madhavi Latha
Professor, ECE Department and Director, IT

JNTUH, Kukatpally
Hyderabad, India

mlmakkena@yahoo.com

Anwar Bhasha Pattan
Research Scholar, Department of ECE

JNTUH CE, Kukatpally
Hyderabad, India

anwarbashapattan@gmail.com

Abstract— In general, Fast Fourier Transform (FFT) hardware
unit has more computational elements, hence always consumes
high power compared to any other computational counterparts.
So, optimization of FFT architecture is always a challenge
because of its complex structure. In this paper, we present the
analysis of computational complexity of various FFT algorithms
and the high performance Single-path Delay Feedback (SDF)
architecture. The analysis has been done on 8 point FFT
processor, designed and synthesized using Xilinx ISE tools.

Keywords-Single-path Delay Feedback; Architecture;
Algorithms; Synthesis

I. INTRODUCTION
Many communication and signal processing applications

have FFT as the most power consuming block. This is because
of its excessive computational complexity. The complexity of
DSP algorithms is typically measured by the number of
multiplications required [1]. There are many algorithms
proposed in the literature to reduce the number of
computations, in which some of them are not suitable for
hardware implementation due to their structural irregularity
[2]. Various architectures for hardware friendly algorithms are
proposed and different modifications are addressed by the
researchers for the reduced computational complexity and
hence less power consumption.

In this work, an 8 point FFT processor is designed using
VHDL for radix-2, radix-8 and radix-23 butterfly structures as
shown in Figures 1, 2 and 3. As presented in [3], there are two
designs for radix-23 butterfly structure, design-I is with
multipliers for the two non trivial complex multiplications and
design-II is with shift add structure as shown in Figure 4 to
implement the multiplications with complex numbers √2/2 (1
+ j) [5], which are nothing but the twiddle factors for the non
trivial multiplications.

II. PROCESSOR DESIGN FOR 8 POINT FFT
The block diagram for an 8 point FFT processor is shown

in Figure 5, in which serial input data samples are first
converted into parallel using serial to parallel conversion
block and then fed to the 8 point butterfly structure for FFT
computation and the resultant output samples are then
converted into serial using parallel to serial conversion block.

The 8 point butterfly structure is replaced by different
structures shown in section

to implement different designs. Functional verification is
done using Xilinx ISIM simulator and the simulation results for
all the processor designs are same as shown in Figure 6.

Figure 1. Butterfly structure for 8 point radix-2 FFT

Figure 2. Butterfly structure for radix-8 FFT

International Journal of Conceptions on Electrical and Electronics Engineering
Vol. 3, Issue. 2, August 2015; ISSN: 2345 - 9603

6 | 1 3

Figure 3. Butterfly structure for radix-23 FFT

Figure 4. Structure for multiplication of (a + jb) with the complex number

√2/2 (1 + j)

These designs are synthesized using Xilinx ISE synthesis
tool. The RTL schematics are shown in Figure 7, by which it is
easily observed that in radix-8 FFT processor, though the
multiplications are less, routing becomes tedious due to huge
number of adders.

Figure 5. Block diagram of an 8 point FFT processor

Figure 6. Simulation results of 8 point FFT

Figure 7(a). RTL schematic for radix-2 FFT

Figure 7(b). RTL schematic for radix-8 FFT

International Journal of Conceptions on Electrical and Electronics Engineering
Vol. 3, Issue. 2, August 2015; ISSN: 2345 - 9603

7 | 1 3

Figure 7(c). RTL schematic for radix-23 FFT (Design-I)

Figure 7(d). RTL Schematic for radix-23 FFT (Design-II)

A radix-2 pipelined Single-path Delay Feedback (SDF)

architecture [4] for an 8 point FFT shown in Figure 8 is also
designed and synthesized. In which the serial input samples
are taken in normal order by the Processing Element (PE)
(Figure 9) and selectively sent to the Delay Unit (DU) to
perform butterfly operation between the respective samples
according to the structure. The PE consists of multiplexers, de-
multiplexers and a Butterfly unit, which is a simple structure
with 2 adders and 2 subtractors as shown in Figure 10.

Figure 8. An 8 point radix-2 pipelined SDF FFT architecture

Figure 9. Processing Element (PE) of figure 8.

Figure 10. Butterfly unit used in PE

Once the butterfly operation is completed at each stage
except the last stage, the processed samples are sent to
Multiplier Unit (MU) (Figure 11), where the samples are
multiplied with twiddle factors selectively. The output samples
from the last stage are in bit reversed order. The RTL
schematic for this design is shown in Figure 12. The Processor
has a simple control circuitry to generate select signals for the
multiplexers and de-multiplexers used in the PE and MU.

a_real

b_real

b_img

a_img

A_real

B_real

B_img

A_img

 Butterfly Unit

PE PEPE

24 1

Twiddle
Factors

Twiddle
Factors

Input
Samples

Output
Samples

DU DU DU

MU MU

International Journal of Conceptions on Electrical and Electronics Engineering
Vol. 3, Issue. 2, August 2015; ISSN: 2345 - 9603

8 | 1 3

Figure 11. Multiplier unit of Figure 8

Figure 12. RTL schematic of proposed SDF architecture

III. RESULTS AND DISCUSSION
The proposed 8 point FFT processor is implemented in

Xilinx Vertex-5 FPGA to observe the utilization of resources
for each of the processor designs with different butterfly
structures. Comparison of computational elements and other
parameters between all the above designs is presented in Table
I. As shown in the Table1, the radix-2 SDF structure gives the
highest performance compared to the other designs with less
resource utilization. This is due to the pipelined structure for
improving the throughput. Among the other designs, radix-23
designs are economical and proved to be faster. In radix-8

design, due to large number of multiple input
adders/subtractors, the interconnection structure becomes
complex and hence causes more delay.

Table I. COMPARISON OF COMPUTATIONAL COMPLEXITY
AND OTHER PARAMETERS

Algorithm radix-2 radix-8 radix-23

design-I
radix-23
design-II

radix-2
SDF

No. of Multipliers 48 30 06 - 08
No. of 16 bit

adders/subtractors 48 14 51 71 12

No. of 32 bit
adders/subtractors 24 116 04 - 04

No. of Slices 762 1703 658 722 412
No. of Flip flops 293 293 293 293 557

No. of LUTs 1229 3328 1027 1082 590
Frequency(MHz) 67.088 58.648 86.338 109.719 187.573

IV. CONCLUSIONS AND FUTURE SCOPE
FFT processors are computationally intensive structures.

The complexity is analyzed when different algorithms are used
to implement an 8 point FFT. Besides different algorithms, the
computational complexity of pipelined SDF architecture is also
analyzed and compared. Results show that performance of FFT
processor can be improved if pipelined structure is used instead
of direct implementation of the butterfly structures. In future,
higher point FFT processors can be used for analysis of
different algorithms with pipelined structures.

REFERENCES
[1] William G. Bliss and Archie W. Julien, “Efficient and Reliable VLSI

Algorithms and Architectures for the Discrete Fourier Transform”,
CH2847-2/90/0000-0901, IEEE, 1990.

[2] P. Duhamel and M. Vetterli "Fast Fourier transforms: a tutorial
review and a state of the art", Signal Process.vol. 19, no. 4, pp. 259-
299, 1990.

[3] Anwar Bhasha Pattan and Dr. M. Madhavi Latha "FPGA
Implementation of an efficient radix-23 FFT Algorithm", in
Proceedings of the National Conference on Emerging Trends in
Information, Digital & Embedded Systems, NC’e-TIDES -15, 28th
February 2015.

[4] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM
(de)modulation”, in Proc. of IEEE URSI International Symposium on
Signals, Systems, and Electronics, Sep. 1998, pp. 257–262.

