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Abstract— In general, Fast Fourier Transform (FFT) hardware 
unit has more computational elements, hence always consumes 
high power compared to any other computational counterparts. 
So, optimization of FFT architecture is always a challenge 
because of its complex structure. In this paper, we present the 
analysis of computational complexity of various FFT algorithms 
and the high performance Single-path Delay Feedback (SDF) 
architecture. The analysis has been done on 8 point FFT 
processor, designed and synthesized using Xilinx ISE tools. 
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I. INTRODUCTION 
Many communication and signal processing applications 

have FFT as the most power consuming block. This is because 
of its excessive computational complexity. The complexity of 
DSP algorithms is typically measured by the number of 
multiplications required [1]. There are many algorithms 
proposed in the literature to reduce the number of 
computations, in which some of them are not suitable for 
hardware implementation due to their structural irregularity 
[2]. Various architectures for hardware friendly algorithms are 
proposed and different modifications are addressed by the 
researchers for the reduced computational complexity and 
hence less power consumption. 

In this work, an 8 point FFT processor is designed using 
VHDL for radix-2, radix-8 and radix-23 butterfly structures as 
shown in Figures 1, 2 and 3. As presented in [3], there are two 
designs for radix-23 butterfly structure, design-I is with 
multipliers for the two non trivial complex multiplications and 
design-II is with shift add structure as shown in Figure 4 to 
implement the multiplications with complex numbers √2/2 (1 
+ j) [5], which are nothing but the twiddle factors for the non 
trivial multiplications. 

II. PROCESSOR DESIGN FOR 8 POINT FFT 
The block diagram for an 8 point FFT processor is shown 

in Figure 5, in which serial input data samples are first 
converted into parallel using serial to parallel conversion 
block and then fed to the 8 point butterfly structure for FFT 
computation and the resultant output samples are then 
converted into serial using parallel to serial conversion block. 

The 8 point butterfly structure is replaced by different 
structures shown in section  

to implement different designs. Functional verification is 
done using Xilinx ISIM simulator and the simulation results for 
all the processor designs are same as shown in Figure 6. 

 

Figure 1. Butterfly structure for 8 point radix-2 FFT 

 
Figure 2. Butterfly structure for radix-8 FFT 
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Figure 3. Butterfly structure for radix-23 FFT 
 

 
Figure 4. Structure for multiplication of (a + jb) with the complex number 

√2/2 (1 + j) 

These designs are synthesized using Xilinx ISE synthesis 
tool. The RTL schematics are shown in Figure 7, by which it is 
easily observed that in radix-8 FFT processor, though the 
multiplications are less, routing becomes tedious due to huge 
number of adders. 

 
Figure 5. Block diagram of an 8 point FFT processor 

 

Figure 6. Simulation results of 8 point FFT 

 
Figure 7(a). RTL schematic for radix-2 FFT  

 
Figure 7(b). RTL schematic for radix-8 FFT  
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Figure 7(c). RTL schematic for radix-23 FFT (Design-I) 

 
 

Figure 7(d). RTL Schematic for radix-23 FFT (Design-II) 

 
A radix-2 pipelined Single-path Delay Feedback (SDF) 

architecture [4] for an 8 point FFT shown in Figure 8 is also 
designed and synthesized. In which the serial input samples 
are taken in normal order by the Processing Element (PE) 
(Figure 9) and selectively sent to the Delay Unit (DU) to 
perform butterfly operation between the respective samples 
according to the structure. The PE consists of multiplexers, de-
multiplexers and a Butterfly unit, which is a simple structure 
with 2 adders and 2 subtractors as shown in Figure 10.  

 

 
Figure 8. An 8 point radix-2 pipelined SDF FFT architecture 

 
Figure 9. Processing Element (PE) of figure 8. 

 

 

Figure 10. Butterfly unit used in PE 

Once the butterfly operation is completed at each stage 
except the last stage, the processed samples are sent to 
Multiplier Unit (MU) (Figure 11), where the samples are 
multiplied with twiddle factors selectively. The output samples 
from the last stage are in bit reversed order. The RTL 
schematic for this design is shown in Figure 12. The Processor 
has a simple control circuitry to generate select signals for the 
multiplexers and de-multiplexers used in the PE and MU. 
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Figure 11. Multiplier unit of Figure 8 

 
Figure 12. RTL schematic of proposed SDF architecture 

III. RESULTS AND DISCUSSION 
The proposed 8 point FFT processor is implemented in 

Xilinx Vertex-5 FPGA to observe the utilization of resources 
for each of the processor designs with different butterfly 
structures. Comparison of computational elements and other 
parameters between all the above designs is presented in Table 
I. As shown in the Table1, the radix-2 SDF structure gives the 
highest performance compared to the other designs with less 
resource utilization. This is due to the pipelined structure for 
improving the throughput. Among the other designs, radix-23 
designs are economical and proved to be faster. In radix-8 

design, due to large number of multiple input 
adders/subtractors, the interconnection structure becomes 
complex and hence causes more delay.  

Table I. COMPARISON OF COMPUTATIONAL COMPLEXITY 
AND OTHER PARAMETERS 

Algorithm radix-2 radix-8  radix-23 

design-I 
radix-23  
design-II 

radix-2 
SDF 

No. of Multipliers 48 30 06 - 08 
No. of 16 bit 

adders/subtractors 48 14 51 71 12 

No. of 32 bit 
adders/subtractors 24 116 04 - 04 

No. of Slices 762 1703 658 722 412 
No. of Flip flops 293 293 293 293 557 

No. of LUTs 1229 3328 1027 1082 590 
Frequency(MHz) 67.088 58.648 86.338 109.719 187.573 

IV. CONCLUSIONS AND FUTURE SCOPE 
FFT processors are computationally intensive structures. 

The complexity is analyzed when different algorithms are used 
to implement an 8 point FFT. Besides different algorithms, the 
computational complexity of pipelined SDF architecture is also 
analyzed and compared. Results show that performance of FFT 
processor can be improved if pipelined structure is used instead 
of direct implementation of the butterfly structures. In future, 
higher point FFT processors can be used for analysis of 
different algorithms with pipelined structures. 
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